Lipschitz Shadowing and Structural Stability

Sergey Tikhomirov1 Sergei Pilyugin2 Alexey Osipov2

1National Taiwan University

2Saint-Petersburg State University

November 2009
Standard Shadowing and Structural Stability

- $f : M \rightarrow M$, $f \in C^1$, $M \in C^\infty$, dist.
- $\{\xi_n\}$ is d-pseudotrajectory, if $\text{dist}(\xi_{n+1}, f(\xi_n)) < d$

- Standard Shadowing (StSh)
 $\forall \varepsilon > 0 \exists d > 0$ such that \forall d-pseudotrajectory $\{\xi_n\}$ there exists exact trajectory $\{x_n\}$ such that
 \[\text{dist}(x_n, \xi_n) < \varepsilon.\]

- SS – set of structurally stable diffeomorphisms.
 There exists neighborhood U_f in the C^1-topology such that for any $g \in U_f$, diffeomorphisms f and g are topologically conjugated.
Known Facts and Hypothesis

- \(SS \subset StSh \) (Robinson 1977, Sawada 1980).
 - Shadowing lemma: If \(\Lambda \) is hyperbolic then \(f \) has shadowing in some \(U(\Lambda) \).
- \(SS \not= StSh \).
- \(Int^1(StSh) = SS \) (Sakai, 1994).
- Hypothesis Abdenur-Diaz: generically \(StSh = SS \).
- Shadowing \(\Rightarrow \) ? Structural Stability.
Lipschitz Shadowing

- **Lipschitz Shadowing (LipSh)**
 \[\exists L, d_0 > 0 \text{ such that } \forall d < d_0 \text{ and } d\text{-pseudotrajectory } \{\xi_n\} \]
 there exists exact trajectory \(\{x_n\} \) such that
 \[\text{dist}(x_n, \xi_n) < Ld. \]

Theorem (Pilyugin, Tikhomirov, 2009)

\(SS = \text{LipSh}. \)

- **Expansivity (EXP):** \(\exists a > 0 \text{ such that if } \forall n \in \mathbb{Z} \]
 \[\text{dist}(f^n(x), f^n(y)) < a \text{ then } x = y. \]
- \(SS \cap \text{EXP} = \text{Anosov} \) (Mane, 1974).
 - Anosov diffeomorphism – whole manifold is a hyperbolic set.

Consequence

\(\text{LipSh} \cap \text{EXP} = \text{Anosov}. \)
Periodic Shadowing

- ΩS – set of Ω-stable diffeomorphisms
 There exists neighborhood U_f in the C^1-topology such that for any $g \in U_f$, f is topologically conjugated to g on $\Omega(f)$.

- Periodic Shadowing (PerSh)
 $\forall \varepsilon > 0 \ \exists d > 0$ such that \forall periodic d-pseudotrajectory $\{\xi_n\}$ there exists periodic exact trajectory $\{x_n\}$ such that
 $$\text{dist}(x_n, \xi_n) < \varepsilon.$$

- Lipschitz Periodic Shadowing (LipPerSh)
 $\varepsilon = Ld$.

Theorems (Osipov, Pilyugin, Tikhomirov, 2009)

- LipPerSh $= \Omega S$.
- $\text{Int}^1(\text{PerSh}) = \Omega S$.

Proof of LipSh $= SS$

\textbf{Mane, 1977:}

$$E^s(x) = \{ v \in T_xM, \ Df^n(x)v \to_{n \to +\infty} 0 \}$$

$$E^u(x) = \{ v \in T_xM, \ Df^n(x)v \to_{n \to -\infty} 0 \}$$

\textbf{Theorem:} If $\forall x \in M \ E^s(x) \oplus E^u(x) = T_xM$ then $f \in SS$.

\textbf{Pliss, 1977:}

p_n – exact trajectory, $A_n = Df(p_n)$.

$$v_{n+1} = A_n v_n + w_n.$$

\textbf{Theorem:} If $\forall |w_n| < 1$ there exists $|v_n| < \infty$ then

$$E^s(p_n) \oplus E^u(p_n) = T_{p_n}M.$$
Proof of $\text{LipPerSh} = \Omega S$

- $f \in \text{LipPerSh}$, Lipschitz constant $L > 0$.
- Periodic orbits are hyperbolic.
- Periodic orbits are uniformly hyperbolic
 - p_n – periodic trajectory, $\nu \in E^u(p_0)$.
 -
 \[|D f^k(p_0)\nu| \geq \frac{1}{L} \left(1 + \frac{1}{L}\right)^{k-1}, \quad k > 0.\]
 - Periodic orbits are dense in $\Omega(f)$.
 - Passing to a limit we prove Axiom A.
 - “no-cycle” condition.
Conclusion

Theorems
- LipSh = SS.
- LipPerSh = ΩS.

Conclusion
Lipschitz Shadowing \Rightarrow Hyperbolicity.

Main Idea
\[f(x) \leftrightarrow v_{n+1} = A_n v_n. \]
Thank you very much for your attention!